Rutgers University: Algebra Written Qualifying Exam August 2014: Problem 2 Solution

Exercise. Let $G = G_1 \times G_2$ where $G_1 \cong G_2 \cong S_4$, the symmetric group on four letters. Suppose that H is any subgroup of G such that $H \cong S_4$. Show that either $H \cap G_1 = 1$ or $H \cap G_2 = 1$

Solution.				
Let $H_1 = H \cap G_1$ and $H_2 = H \cap G_2$ Since $G = G_1 \times G_2$, $G_1 \triangleleft G$ and $G_2 \triangleleft G$. really think $G_1 = G_1 \times \{1\}$ and $G_2 = \{1\} \times G_2$ For any normal subgroup K of G, the subgroup $K \cap H \leq H$ is normal in H				
$\implies H_1 = H \cap G_1 \triangleleft H$ Also, $G_1 \cap G_2 = 1$		$H_2 = H \cap G$ $H_1 \cap H_2 = 1$		
$\implies H_1 \times H_2 \cong H_1 H_2 \le H$ And for any $x \in H$,				
$xH_1H_2x^{-1} = (xH_1x^{-1})(xH_2x^{-1})$ = H_1H_2 since $H_1, H_2 \triangleleft H$				
Thus, H_1H_2 is a normal subgroup of H .				
Since $H_1, H_2, H_1H_2 \triangleleft H \cong S_4$, look at the normal subgroups of S_4 .				
1 = 1,	$ S_4 = 24,$		$ A_4 = 12$	$ V_4 = 4$
Since $ H_1 \cap H_2 = 1$, $ H_1H_2 = H_1 H_2 $				
By looking at possible orders of H_1 , H_2 , and H_1H_2 , it is obvious that either				
$H_1 = 1$		and OR	H	$_{2} = S_{4}$
$H_1 = S_4$		and	H_{2}	$_{2} = 1$